② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。 这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。 10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10, ……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。 1周角=2平角=4直角 1直角=90°11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。 (1)画一条射线,使量角器的中心和射线°刻度线和射线)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。 (3)以画出的射线的端点为端点,通过刚画的点再画一条射线、经过一点可以画无数条直线;经过两个点,只能画一条直线、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15° 先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。 4、一共行了多长的,叫做程;每小时(或每分钟等)行的程,叫做速度;行了几小时(或几分钟等),叫做时间。速度 ×时间= 程 6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。 7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。8、平行四边形的特点:容易变形。例如:伸缩门、升降机9、平行四边形和梯形有无数条高。 两个完全一样的梯形可以拼成一个平行四边形。两个完全一样的直角梯形可以拼成一个长方形或平行四边形。 合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。 2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。 1、小数乘整数:意义——求几个相同加数的和的简便运算。如:1.5×3表示1.5的3倍是多少或3个1.5是多少。 计算方法:先把小数扩大成整数;按整数乘法的算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 2、小数乘小数:意义——就是求这个数的几分之几是多少。如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。 计算方法:先把小数扩大成整数;按整数乘法的算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 3、规律:一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。 8、确定物体的,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在的点。二是给出坐标中的一个点,要能用数对表示。 9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。 10、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。 11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的进行计算。 12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。13、 除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。 14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.简写作6.32 15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。 16、事件发生有三种情况:可能发生、不可能发生、一定发生。17、可能发生的事件,可能性大小。把几种可能的情况的份数相加做分母,单一的这种可能性做,就可求出相应事件发生可能性大小。 18、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。 20、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式 必须有未知数两者缺一不可)。使方程左右两边相等的未知数的值,叫做方程的解。求方程的解的过程叫做解方程。 21、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商23、所有的方程都是等式,但等式不一定都是等式。 平行四边形可以成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高; 长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。 平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2 30、两个完全一样的梯形可以拼成一个平行四边形。平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。 (4)一条的两边两端不栽树=(长÷间隔-1)×2(5)锯木头时间问题:锯一段木头时间=总时间÷(段数-1) 算术假设法2:假设几只都是鸡,(都是脚少的鸡),先求兔子的只数兔子的只数:(总脚数-总头数×2)÷(4-2即一只兔的脚数减去一只鸡的脚数) 36、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定最多能看到三个面。 (2)轴对称图形的特点:沿对称轴对折,两边完全重合。‚每一组对应点到对称轴距离度相等。对应点之间的连线与对称轴互相垂直。(3)要能根据对称轴画出对称图形的另一半。38、数字编码:(1)数不仅可以用来表示数量和顺序,还可以用来编码 “分数乘整数”指的是第二个因数必须是整数,不能是分数。2、一个数乘分数的意义就是求一个数的几分之几是多少。 “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)(二)分数乘法计算: (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。 (3)在乘的过程中约分,是把、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。 (4)分数的基本性质:、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。(三)积与因数的关系: 一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b 1时,ca(b≠0)。 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数) 2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。 数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。 (1)、先找观测点;(2)、再定方向(看方向夹角的度数);(3)、最后确定距离(看比例尺)。 关系的相对性:两地的具有相对性在叙述两地的关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。 一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。 ①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。 (2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)、两个小数的比,向右移动小数点的,也是先化成整数比。 5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。6、比和除法、分数的区别: 分数的基本性质:和分母同时乘或除以相同的数(0除外),分数的大小不变。分数除法和比的应用 半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。 直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。 :如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。 3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。 2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。 3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。 5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。 一、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。 (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的可以是小数,分数的只可以是整数。 注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。 1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。 2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。 1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。梦见小男孩拉屎
|